
index

Bioinformatics

ComputationalSolving

Content

Syllabus

ComputerNetworking

ContactPublicKey

DataStructures

DataStructuresLab

DeepLearning

FutureClasses

ProgrammingCpp

Security

Syllabus
__

Communication procedures (actually read and
follow these)

If you have a question regarding class administration or missing class,

then please email the professor, or ask in person.

If you have questions above-and-beyond the material, or just because

you are interested, contact me however you want!

If you have a question about theoretical course content, or

assignment specifications, do NOT email, but instead, you should

either:

Come to the office hours of the professor or LEAD tutor. This

option is guaranteed to at least get you a sincere attempt at an

answer.

1.

Post your question in the discussion forum in Canvas, which is

monitored by the graders and the professor (with no guarantees

about answers being provided, though we very much try). I

encourage students to help others in the forum, with the

exception that it would not be wise to post or copy code or

assignment answers in the discussion forum.

2.

If you have a question about how an assignment was graded, come to

office hours. Neither the professor nor the graders can feasibly

respond to grading issues via email (such questions almost always

require real discussion and demonstration).

If you have a debugging or related question about your programming

assignments, then attend either the professor's or LEAD tutor's office

hours. It is not feasible to fairly and equally satisfy all requests for

programming or debugging help via email. Specifically, do not send

your code to the graders, LEAD tutors, or professor and expect that it

is reasonable for them to debug it for you. Hint: this means you should

plan to do your assignments early, to get debugging help if needed

during office hours.

If you truly can not make office hours times due to a consistent time

conflict, I will make every attempt to find a time to meet with you

ASAP. Please avoid abusing this policy merely because you do not feel

like coming or waiting during office hours times.

Professor
Dr. Taylor

http://cs.mst.edu/facultystaffandfacilities/facultydirectory/

Course websites

Grade recording and discussion forums: https://mst.instructure.com/

All course materials: https://mst-cs.gitlab.io/

Programming assignments: https://git-classes.mst.edu/

Office hours and programming help
Below are some good sources of tutoring-style help in the class.

We have office hours every singe day of the week!

1. Instructor
Please feel free to come to my office hours, either during scheduled times

or by appointment.

If you are having trouble, this can be very helpful!

All office hours start the second week of class.

Comp Sci room 212/213 (CS-Linux computer lab/lounge)

Times (overlapping with LEAD):

My office (CS317)

Times (not LEAD, just my office):

Or if you really can not attend the other hours, by appointment.

Syllabus https://mst-cs.gitlab.io/index_files/Computation...

1 of 8 3/8/19, 11:25 PM

2. LEAD hours (Fall/Spring only)
Also, there are LEAD learning center (http://lead.mst.edu/schedule/) hours.

Comp Sci room 212/213 (CS-Linux computer lab/lounge)

The Learning Enhancement Across Disciplines Program (LEAD) sponsors

free learning assistance in a wide range of courses for students who wish to

increase their understanding, improve their skills, and validate their

mastery of concepts and content in order to achieve their full potential.

LEAD assistance starts no later than the third week of classes. Check out

the online schedule at http://lead.mst.edu/assist, using zoom buttons to

enlarge the view. Look to see what courses you are taking have

collaborative LEAD learning centers (bottom half of schedule) and/or

Individualized LEAD tutoring (top half of the schedule). For more

information, contact the LEAD office at 341-7276 or email lead@mst.edu.

Pro-tip: We are really happy to help - so come to get assistance early ;)

Class/teaching evaluation and improvement
Please let me know what you like about the class and how it can be

improved!

Course description
This course provides a rigorous introduction to computational problem

solving, thinking, and debugging, for those with little-to-no experience in

computer science. Language-agnostic foundations focus on pseudo-code,

flowcharts, and software-based code tracing, then build to programming in

a high level interpreted language, with a focus on data and modeling.

Prerequisite

A good attitude and an interest in computing!

Textbooks
Required readings and activities will be assigned from these books:

Part 1 - Language-agnostic fundamentals:

https://www.zybooks.com/catalog/fundamental-programming-concepts/

https://www.zybooks.com/catalog/troubleshooting-basics/

Part 2 - Python3 language basics

https://www.zybooks.com/catalog/programming-in-python-3/

http://greenteapress.com/thinkpython2/thinkpython2.pdf

Part 3 - Using Python3 to create interactive models (a.k.a. games...)

http://inventwithpython.com/invent4thed/

http://inventwithpython.com/pygame/

Attendance

We take attendance via daily web-quizzes (Kahoot/Canvas)

Missing classes will greatly diminish your chances for getting a good

grade in this class.

If you miss more than 5 classes, we may drop you from the class.

Technical and programming assignments

You should expect around 1 assignment every 1-1.5 weeks

Syllabus https://mst-cs.gitlab.io/index_files/Computation...

2 of 8 3/8/19, 11:25 PM

Working environment: the class virtual machine (current)

Develop, test, and submit your assignments using the class virtual

machine.

Setup is detailed here: DataStructuresLab:Content:VirtualMachines

We grade in this environment.

Campus computers (old, not guaranteed to work)

Campus has Linux machines, and these will work for most purposes,

but you must test in the provided VM before submission.

Develop, test, and submit your assignments using the department

Linux systems either in the lounge/lab, or remotely:

http://itrss.mst.edu/linux-support/

http://itrss.mst.edu/linux-support/user-documentation/

Remotely, ssh into the department's IT Linux systems (*nix):

Where NN = computer number

$ ssh yourlogin@rcNNxcs213.managed.mst.edu

or for Windows, use https://putty.org to connect to the same address

or if you want to run a graphical application (*nix):

$ ssh -X yourlogin@rcNNxcs213.managed.mst.edu

and for graphical applications on Windows:

Run Xming

Using https://putty.org enable X-fordarding under SSH menu: read

../../DataStructuresLab/Content/tools-for-computer-scientists.pdf

Appendix B

Things you should check before you submit:

Compare your output to any given sample output to make sure they

are the same, including all newlines and spaces, via:

$ diff --color sample_output.txt your_output.txt

or for two-column format (easier to see):

$ diff -y --color sample_output.txt your_output.txt

Identity (name) function included

Files should be in UTF-8, Unix delimited (which if you used solely the

Linux environment without copy-pasting from Windows, you should be

fine)

Make sure to download and use the sample input and output text files

we gave, not the text copied into a new text file you made.

Your program compiles and runs in the specified Linux environment

Check that file names match requirements and/or have not been

changed

Are you testing your execution with unchanged header files if

specified (by checking the file in an old commit), in case you edited

for debugging purposes? You should almost never edit the header

files!

Did you check the program with more input / output test cases than

we gave you by generating your own?

Did you check that your functions all have the right inputs and

outputs, even if they also have outputs to the screen?

Did you push your latest commits and check you can see them online

in the Gitlab interface?

Submitting your assignments via Git
To prepare for submitting assignments

Log into https://git-classes.mst.edu with your S&T login1.

Watch the videos here: https://git-scm.com/videos2.

Read Appendix E - Submitting homework with Git, in the Data

Structures Lab manual: ../../DataStructuresLab/Content/tools-for-

3.

Syllabus https://mst-cs.gitlab.io/index_files/Computation...

3 of 8 3/8/19, 11:25 PM

computer-scientists.pdf

Some optional extras include the full set of materials listed under the

Version Control lab day here: DataStructuresLab:Content

4.

Submit using the repositories created for each assignment at: https://git-

classes.mst.edu/

Execute once:

$ git clone https://url-for-your-repository

Execute as many times as you like from within the directory/repository

you cloned to your hard drive (just an example):

$ git status

$ git add *.txt *.py

$ git add SUBDIRECTORY/*

$ git commit -m "Informative description of the commit"

$ git push

Do not add:

Compiled or generated files like a.out, your executable files, etc.

Put the name of these files in a text file named .gitignore

If you see your changes reflected on the git-classes site, you have

submitted successfully.

If you work from different computers and want to synchronize, or we

make changes to your repository:

$ git pull

Tips

All of the functions in header files we provide must be completed as

directed by the comments. Any changes to function names or

parameters means we cannot properly grade that function, and you

will not receive any points for it. Do not edit the header files!

Carefully read the comments of each member function, noting both

return values and print statements (they are not the same!).

Develop your member functions one at a time, starting from the

simplest ones.

Move to the next function only after the previous one has been tested.

Trying to code the whole class and then remove the bugs afterwards

will likely prove to be too big a task.

Build your own simple test cases.

Print plenty of status messages to track the progress of your algorithm

(and remember to comment them out before submission)

Using Windows Python or online web-based compilers is bad idea…

Stick to python3 and the local IDEs that are Linux compatible, within

the class VM.

Quizzes / Daily questions

Published experimental studies in the fields of research in cognitive

psychology and education have shown that frequent (rather than

sparse) recall, is both more effective for learning, retention, and

synthesis, and also encourages frequent smaller bouts of studying,

rather than cramming.

Thus, we will have daily quizzes. These are administered using a

clicker-like system. To avoid having to pay for a clicker, we use a free

service called Kahoot (https://kahoot.com/).

The goal of these is to incentivize four things:

Showing up to class! You get 1/2 points for a wrong answer.

Regular distributed studying and reading rather than batched

cramming. The easy daily questions are on pre-class reading

material being lectured that day.

Staying awake in class...

Reduced-stress assessment of your understanding of material

(less painful grading)

Syllabus https://mst-cs.gitlab.io/index_files/Computation...

4 of 8 3/8/19, 11:25 PM

You will need to have a web-capable device in class (Android

phone/tablet, iPhone/iPad, laptop, ChromeBook, etc.). This is a fair

expectation for the following reasons:

Most students have a smart-phone or laptop.

If you do not, classes already require students to pay for (or

worse, rent...) a clicker ($45+), and one can obtain a web-

capable Android smartphone (a.k.a. WiFi-capable prepaid

"burner") for around $20 at local stores such as Kroger, Walmart,

and most gas stations, without a service plan (you merely need

WiFi, which is free on campus).

Grading
You will be graded based on assignments, projects, quizzes, and other

miscellaneous activities.

We reserve the right to factor in points for attendance related performance,

participation, or efforts demonstrated during office hours.

Assignment grading

Assignments will be graded (on a scale from 0 to 100) primarily on

their correctness.

Complete and correct output for every test input case is necessary for

a full score.

A non-running,or crashing program or script will receive a score of 0.

We design unit tests so that one can crash and the rest can succeed,

so that you can get more points.

If a program compiles and/or runs, then points will be deducted for

each incorrect test case output. Points may also be deducted for:

Missing name function

Incorrectly formatted output. (Presentation Error)

Specific types of inefficiency

File format issues

It is expected that all of your work runs correctly in the specified Linux

environment we are working with in class, in the exact manner we specify

in the assignment description. If you were contracted to write code for a

job, and it ran on your computer, but not your employer's as they needed,

your work would be considered a failure. In that light, you are also

responsible for submitting all text and source files encoded UTF-8, Unix

delimited.

The test cases we will run for grading are more extensive than any sample

input we give you. It is possible, even likely, that if your program seemingly

works perfectly, for example with a sample_input.txt, that it may not work

perfectly with our grading; this is fair and reasonable challenge, since we

describe the bounds of performance required generally; when coding in the

real world for a job, you will be expected to anticipate edge cases, weird

behavior, larger than expected data-sets, etc. Practicing this can help you

train one of the more important skills of an industry programmer. You

should make some test cases yourself, that have input and output, perhaps

different or which exemplify some edge case.

We do not currently grade on your style. Good programmers don’t always

have good comments, but they almost always have clean, consistent,

readable code style and formatting... Take pride in your code.

After grading any given assignment, if that assignment appeared to be too

difficult for the class, we may normalize to the top student's performance

(the student with the highest point rank will get a 100% / A). This can, by

definition, only help your grade, but not hurt it.

Assignment feedback
Feedback for every assignment will be pushed to your repositories hosted

at: https://git-classes.mst.edu/

Feedback will be pushed once for the first round of grading, and once after

the second round of re-grading.

Feedback comes in the form of correct/incorrect results for a variety of unit

Syllabus https://mst-cs.gitlab.io/index_files/Computation...

5 of 8 3/8/19, 11:25 PM

tests on your code.

The feedback CSV files (e.g., file.csv) can be opened in

https://www.libreoffice.org/

Quiz grading

Our free web-based "clicker"-like questions will be treated as daily

quizzes.

Time does not count for points (though it does in Kahoot scoring), just

correctness.

If you miss class, you will miss the points for that day.

There are several ways to do well on these quizzes:

Come to class.1.

Do the reading on the topic to be lecture, BEFORE CLASS.2.

Come prepared with your web-capable device.3.

Make sure to use your correct assigned "anonymous" user-code

(if you do not, you will not get points for the day).

4.

Overall grading
We grade using the following categories :

Assignments

100 points for each technical assignment

Daily quizzes

3 points for each quiz (usually 3 questions per day)

1/2 points for a wrong answer

Any miscellaneous points (attendance, bonus, participation, etc.)

Weighting between the above categories is available on Canvas. Weighting

percentages for each category may change slightly toward the end of the

semester, depending on student performance; I occasionally try to re-

weight to improve grand average scores.

Your final grade = percent of possible points

Your letter grade = standard S&T letter-percentile mapping:

A : [90.00 - 100] %

B : [80.00 - 90) %

C : [70.00 - 80) %

D : [60.00 - 70) %

F : < 60 %

Though I would often like to, grades can not be fairly rounded without

giving everyone a bonus.

For example, if you have a 79.9, that is a C.

View your grades
You can check your grades on Canvas:

http://canvas.mst.edu/

Re-grades, late work, and makeups

If you make a mistake in your code (small, large, or whatever) leading

to a bad grade, then you can re-submit your programming assignment

within 5 days of grades being returned, for a possible 50% of your

points back, with a no-decrease rule: Max(old_grade,

Mean(new_grade, old_grade)).

If you miss this second re-submission deadline, then re-submissions

will not be accepted. This includes asking for re-submissions at the

end of the semester because your grade is too low.

You only get one re-submission per assignment.

For each first-try submission, we will give you summary feedback in

your git repositories, which will not be highly detailed, though will tell

you which functions failed. It is your job to determine what went

wrong by re-reading the assignment specifications and improving your

unit testing. During office hours, for pre-re-submission queries, we will

not directly test your code for you, but will provide help and guidance.

For post-re-submission queries, we will help you find bugs directly and

do all the re-runs you like!

Syllabus https://mst-cs.gitlab.io/index_files/Computation...

6 of 8 3/8/19, 11:25 PM

Late submissions will not be accepted directly, though can be

submitted as a re-submission, if within the re-submission time-window.

It would be wise to account for something unexpected popping up last

minute, so try to finish your assignments early.

If you have an S&T-acceptable documented reason (i.e., death in the

family, etc) for missing in-class events, please see the professor to

discuss potential re-scheduling or accommodation.

Academic honesty
You're here to learn and better yourself! Write all your work in your own

words, and write your own code. Do not copy-paste (plagiarize) from any

source. If you are not sure, err on the side of caution and do your work

independently. Occasional infrequent help from a friend when your are

really stuck may be reasonable, though if that "help" is frequent enough

that your collaboration results in almost identical code, it was too much

collaboration for an assignment intended to be independent work (which all

are unless explicitly assigned as group work).

If you are found to be engaging in any form of academic dishonesty, the

most severe penalties permitted by the university will be enacted.

Incidences will typically result in grades of 0 for the respective course

components, as well as notification of the student's advisor, the student's

department chair, and the campus undergraduate studies office. Further

academic sanctions may be imposed as well in accordance with university

regulations (http://academicsupport.mst.edu/academicintegrity/). Those

who allow others to copy their work are also committing plagiarism and will

be subjected to the same procedures.

The Honor Code can be found at this link: http://stuco.mst.edu/honor-code/.

Page 30 of the Student Academic Regulations handbook describes the

student standard of conduct relative to the University of Missouri System's

Collected Rules and Regulations section 200.010, and offers descriptions of

academic dishonesty including cheating, plagiarism or sabotage

(http://registrar.mst.edu/academicregs/index.html). Also see:

http://academicsupport.mst.edu/academicintegrity/studentresources-ai

We check your assignments against each other with software that is VERY

good at detecting similarities and differences between any text files,

including your source files. These methods are difficult, if not impossible to

trick. Please do not try to copy-paste, share sources directly, or write all

your code in a group or pair for individual assignments; you will not like the

consequences!

Attempting to deceive attendance checking procedures is considered

academic dishonesty for ALL parties involved. For example, do not submit

someone else's pre-lab or lab assignment for them because they are not

attending class.

Burns & McDonnell Student Success Center
The Student Success Center is a centralized location designed for students

to visit and feel comfortable about utilizing the campus resources available.

The Student Success Center was developed as a campus wide initiative to

foster a sense of responsibility and self-directedness to all S&T students by

providing peer mentors, caring staff, and approachable faculty and

administrators who are student centered and supportive of student

success. Visit the SSC at 198 Toomey Hall; 573-341-7596;

success@mst.edu; web: http://studentsuccess.mst.edu/

Accessibility and Accommodations
If you have a documented disability and would like accommodations in this

course, please facillitate providing documentation to the professor as early

as possible in the semester. Disability Support Services staff will need to

send a letter to the professor specifying the accommodation you will need.

It is the university’s goal that learning experiences be as accessible as

possible. If you anticipate or experience physical or academic barriers

based on disability, please contact Student Disability Services at (573)

341-6655, sdsmst@mst.edu, visit http://dss.mst.edu/ for information, or go

Syllabus https://mst-cs.gitlab.io/index_files/Computation...

7 of 8 3/8/19, 11:25 PM

to mineraccess.mst.edu to initiate the accommodation process. Please be

aware that any accessible tables and chairs in this room should remain

available for students who find that standard classroom seating is not

usable.

Title IX
Missouri University of Science and Technology is committed to the safety

and well-being of all members of its community. US Federal Law Title IX

states that no member of the university community shall, on the basis of

sex, be excluded from participation in, or be denied benefits of, or be

subjected to discrimination under any education program or activity.

Furthermore, in accordance with Title IX guidelines from the US Office of

Civil Rights, Missouri S&T requires that all faculty and staff members

report, to the Missouri S&T Title IX Coordinator, any notice of sexual

harassment, abuse, and/or violence (including personal relational abuse,

relational/domestic violence, and stalking) disclosed through

communication including but not limited to direct conversation, email,

social media, classroom papers and homework exercises. Missouri S&T's

Title IX Coordinator is interim chief diversity officer Neil Outar. Contact him

(naoutar@mst.edu; (573) 341-6038; Temporary Facility A-1200 N. Pine

Street) to report Title IX violations. To learn more about Title IX resources

and reporting options (confidential and non-confidential) available to

Missouri S&T students, staff, and faculty, please visit http://titleix.mst.edu.

Classroom Egress Maps
http://designconstruction.mst.edu/floorplan/

Backlinks: index:ComputationalSolving

Syllabus https://mst-cs.gitlab.io/index_files/Computation...

8 of 8 3/8/19, 11:25 PM

